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Abstract. For a unital foundation topological ∗-semigroup S whose rep-

resentations separate points of S, we show that the spectrum of the
Fourier-Stieltjes algebra B(S) is a compact semitopological semigroup.
We also calculate B(S) for several examples of S.
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1. introduction

In [3] Lau studied the subalgebra F (S) of WAP(S) of a topological semigroup
S with involution. If G is an abelian topological group, then F (G) ' M(Ĝ)
where Ĝ is the dual group of G. If S is a topological ∗- semigroup with an
identity, then F (S) is the linear span of positive definite functions on S. The
authors introduced and studied Fourier and Fourier-Stieltjes algebras A(S)
and B(S) of a foundation topological ∗-semigroup S in [1]. When S is unital,
B(S) = F (S).

Let S be a locally compact topological semigroup and M(S) be the Banach
algebra of all bounded regular Borel measures on S. We consider the mappings
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Lµ and Rµ of S into M(S) defined by

Lµ(x) = µ ∗ δx, Rµ(x) = δx ∗ µ (x ∈ S, µ ∈M(S)),

where δx is the point mass at x. Then the semigroup algebra L(S) consists of
those µ ∈M(S) for which L|µ| and R|µ| are continuous with respect to the weak
topology of M(S), and L(S) is a Banach subalgebra of M(S). The semigroup
S is called foundation if ∪{supp(µ) : µ ∈ L(S)} is dense in S [6].

A representation of S is a pair {π,Hπ} of a Hilbert spaceHπ and a semigroup
homomorphism π : S → B(Hπ) such that π is (weakly) continuous, i.e. the
mappings x 7→ 〈π(x)ξ, η〉 are continuous on S, for all ξ, η ∈ Hπ, and that π
is bounded if ‖π‖ = supx∈S‖π(x)‖ < ∞. Also π is called a ∗-representation
if moreover π(x∗) = π(x)∗(x ∈ S), where the right hand side is the adjoint
operator. A ∗-representation {σ,H} of L(S) is called non-vanishing if for every
0 6= ξ ∈ H, there exists µ ∈ L(S) with σ(µ)ξ 6= 0. Let Σ(L(S)) be the family of
all ∗-representations of L(S) on a Hilbert space which are non-vanishing, and
Σ(S) be the family of all continuous ∗-representations π of S with ‖π‖ ≤ 1,
then one has a bijective correspondence between Σ(S) and Σ(L(S)) via

〈π̃(µ)ξ, η〉 =
∫

S

〈π(x)ξ, η〉dµ(x) (µ ∈ L(S), ξ, η ∈ Hπ = Hπ̃).

Given ρ ⊆ Σ = Σ(S) and µ ∈ L(S), define ‖µ‖ρ = sup{‖π̃(µ)‖ : π ∈ ρ}
and Iρ = {µ ∈ L(S) : ‖µ‖ρ = 0}. Then Iρ is clearly a closed two-sided ideal
of L(S) and ‖µ + Iρ‖ = ‖µ‖ρ defines a C∗-norm on L(S)/Iρ. The completion
of this quotient space in this norm is a C∗-algebra which is denoted by C∗

ρ(S).
When ρ = Σ, then the C∗-algebra C∗(S) = C∗

Σ(S) is called the (full) semigroup
C∗-algebra of S. If S is foundation and Σ separates the points of S, then L(S)
is ∗-semisimple and so IΣ = {0}. In this case L(S) is a norm dense subalgebra
of C∗(S) (see [1] for more details).

A complex valued function u : S −→ C is called positive definite if for all
positive integers n and all λ1, . . . , λn ∈ C, and x1, x2, . . . , xn ∈ S, we have

n∑
i=1

n∑
j=1

λiλ̄ju(xix
∗
j ) ≥ 0.

Let P (S) denotes the set of all continuous positive definite functions on S. We
denote the linear span of P (S) by B(S) and call it the Fourier-Stieltjes algebra
of S. Let S be a topological *-semigroup and Cc(S) be the algebra of all
continuous functions on S with compact support. Then the closed subalgebra
(B(S) ∩ Cc(S)) ⊆ B(S) is denoted by A(S) and is called the Fourier algebra
of S.

2. Fourier-Stieljes algebra

It is well known that for an abelian topological group G, the Fourier and
Fourier-Stieltjes algebras A(G) and B(G) are isometrically isomorphic to the
group and measure algebras L1(Ĝ) and M(Ĝ) of the dual group Ĝ. For a class
of commutative foundation topological ∗-semigroup with identity we show that
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B(S) is isometrically isomorphic to M(Ŝ). Here Ŝ is the set of continuous
semi-characters on S which is a locally compact topological semigroup [3].

Theorem 2.1. Let S be a commutative foundation topological ∗-semigroup
with identity. For λ ∈ L(Ŝ), define λ̂ : S → C by

λ̂(x) =
∫

Ŝ

χ(x)dλ(χ) (x ∈ S).

Then the map λ 7→ λ̂ is a continuous monomorphism from L(Ŝ) into B(S).

Proof. Ŝ is a locally compact topological semigroup [3]. Also for each λ ∈ L(Ŝ)
there is a probability measure γ on Ŝ and φ ∈ L1(Ŝ, γ) such that dλ = φdγ.
We can decompose φ as

φ = (φ1 − φ2) + i(φ3 − φ4),
where φi ≥ 0, for i = 1, . . . , 4. Put dλi = φidγ. Then for each n ≥ 1,

c1, . . . , cn ∈ C, and x1, . . . , xn ∈ S,

n∑
i,j=1

cic̄j λ̂k(xix
∗
j ) =

∫
Ŝ

n∑
i,j=1

cic̄jχ̂(xix
∗
j )dλk(χ) ≥ 0,

for k = 1, . . . , 4. Next we show that λ̂k is also continuous. Given ε > 0,
there is a measurable subset K ⊆ Ŝ such that∫

Ŝ\K
φk(χ)dγ(χ) < ε.

By Ascoli’s Theorem, K is equicontinuous. Now given x0 ∈ S, there is a
neighborhood U of x0 in S such that

|χ(x)− χ(x0)| < ε (χ ∈ K,x ∈ U).

For each x ∈ U ,

|λ̂k(x)− λ̂k(x0)| ≤
∫

Ŝ

|χ(x)− χ(x0)|dλk(χ)

≤
∫

K

|χ(x)− χ(x0)|dλk(χ) +
∫

Ŝ\K
|χ(x)− χ(x0)|dλk(χ)

≤ ελk(K) + 2ε ≤ (2 + λk(Ŝ))ε.

This shows that λ̂k ∈ P (S), for k = 1, . . . , 4, and so λ̂ ∈ B(S). Next we have

‖λ̂‖B(S) = sup
∣∣ ∫

S

λ̂(x)dµ(x)
∣∣ = sup

∣∣ ∫
S

∫
Ŝ

χ(x)dλ(χ)dµ(x)
∣∣

≤
∫

Ŝ

∣∣ ∫
S

χ(x)dµ(x)
∣∣d|λ|(χ) ≤ ‖λ‖,

where the supremum is taken over all µ ∈ L(S) with ‖µ‖Σ ≤ 1 (see [1]). Also
the last inequality follows from the fact that each semi-character χ ∈ Ŝ could
be regarded as a representation of S.
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When λ is positive, we also have

‖λ‖ =
∫

Ŝ

χ(e)dλ(χ) = λ̂(e) ≤ ‖λ̂‖B(S),

since χ(e) = 1, for each χ ∈ Ŝ, where e is the identity of S. In general,
λ = (λ1 − λ2) + i(λ3 − (λ4), with λk’s positive, and we have

‖λ‖ ≤
4∑

i=1

‖λi‖ ≤
4∑

i=1

‖λ̂i‖.

In particular the map λ 7→ λ̂ is injective.
Finally, for λ, µ ∈ L(S) and x ∈ S we have

(λ ∗ µ)̂ (x) =
∫

S

χ(x)d(λ ∗ µ)(χ) =
∫

S

∫
S

χ(x)ζ(x)dλ(χ)dµ(ζ) = λ̂(x)µ̂(x),

and we are done. �

Remark 2.2. In the group case, the range of the above map is A(S). We
don’t know if this is the case for foundation semigroups.

Following [4] we say that S is of type U if it has a dense subsemigroup U
which is a union of groups. Then to each x ∈ U there corresponds an element
x

′ ∈ U (the inverse of x in the group to which x belongs) such that xx
′

and
x

′
x are idempotents and

xx
′
x = x, x

′
xx

′
= x

′
.

In [5] a concept of positive definite functions is defined for semigroups of
type U . We denote the set of positive definite functions on U by P (U). When
U is an increasing union or a disjoint union of groups, this element x

′
is unique

for each x ∈ U . When the latter holds and the map x 7→ x
′
is continuous we say

that S is of type Ū . In this case the map x 7→ x
′
on U extends to a continuous

map x → x∗ on S and S becomes a topological ∗-semigroup. In this case we
can talk about positive definite functions on S in the sense of section 1. If U
is an increasing union or a disjoint union of groups, each open in S, then S is
of type Ū . If S is of type Ū , then it is easy to see that for each f ∈ Cb(S),
f ∈ P (S) if and only if f|U ∈ P (U). In particular for a unital commutative
semigroup S of type Ū we have B(S) = R(S) [5, 7.2.5]. Now the following
result follows from [5] immediately.

Proposition 2.3. If S is a commutative foundation ∗-semigroup of type Ū
with identity, then the map λ 7→ λ̂ is a linear isometry of M(Ŝ) onto B(S).

Note that if we consider the semigroup of integers Z with trivial involution
n∗ = n, then we have B(Z) 6= R(Z) [7].
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3. Spectrum of the Fourier algebra

In this section we show that for a unital foundation topological ∗-semigroup
S, the spectrum of B(S) is a compact unital semitopological semigroup. Let
S be a unital foundation topological ∗-semigroup with identity e and Ω =
Ω(S) be the family of all continuous ∗-representations ω of S in a W∗-algebra
Mω with ‖ω‖ ≤ 1. Let ωΩ be the universal representation of S in the `∞

direct sum MΩ =
∑

ω∈Ω⊕Mω. Then the predual (MΩ)∗ is the `1 direct sum∑
ω∈Ω⊕(Mω)∗ and for each ψ ∈ (MΩ)∗ we have u = ψ ◦ ωΩ ∈ B(S) and

‖u‖ ≤ ‖ψ‖ [1, 3.1, 3.4], [7].
For u ∈ B(S) and x, y ∈ S let ux(y) = u(yx) then ux ∈ B(S) with ‖ux‖ ≤

‖u‖ [1, 3.4]. This means that the right translation operators τx : B(S) → B(S)
defined by

τx(u) = ux (x ∈ S, u ∈ B(S)),
are bounded with ‖τx‖ ≤ 1.

Definition 3.1. For u ∈ B(S) and f ∈ B(S)∗ = W ∗
Ω(S) define Ef (u) : S → C

by
Ef (u)(x) = 〈f, ux〉 (x ∈ S).

Lemma 3.2. For f ∈W ∗
Ω(S), Ef : B(S) → B(S) is a bounded linear operator

which commutes with right translation operators and ‖Ef‖ = ‖f‖.

Proof. Let u ∈ B(S) and choose ψ ∈ (MΩ)∗ with u = ψ ◦ ωΩ and ‖u‖ = ‖ψ‖,
then u(x) = 〈ωΩ(x), ψ〉, for x ∈ S. Given ζ ∈ (MΩ)∗ and m ∈ MΩ define
ζ.m ∈ (MΩ)∗ by 〈n, ζ.m〉 = 〈mn, ζ〉 for n ∈MΩ. Also m.ζ is defined similarly.
For each x, y ∈ S,

ux(y) = u(yx) = 〈ωΩ(yx), ψ〉 = 〈ωΩ(y), ψ.ωΩ(x)〉,
hence ux = (ψ.ωΩ(x)) ◦ ωΩ. To each f ∈ W ∗

Ω(S) there corresponds f◦ ∈ MΩ

defined by 〈f◦, ζ〉 = 〈f, ζ ◦ ωΩ〉, for ζ ∈ (MΩ)∗. Then

Ef (u)(x) = 〈f, ux〉 = 〈f, (ψ.ωΩ(x)) ◦ ωΩ〉 = 〈f◦, ψ.ωΩ(x)〉 = 〈ωΩ(x), f◦.ψ〉,
so Ef (u) = (f◦.ψ) ◦ ωΩ ∈ B(S) with ‖Ef (u)‖ ≤ ‖f◦.ψ‖ ≤ ‖u‖ ‖f‖, that is
‖Ef‖ ≤ ‖f‖. On the other hand |〈f, u〉| = |Ef (u)(e)| ≤ ‖Ef (u)‖ ≤ ‖Ef‖ ‖u‖,
hence ‖Ef‖ = ‖f‖. Finally, for x, y ∈ S,

(Ef (u))x(y) = Ef (u)(yx) = 〈f, uyx〉 = 〈f, (ux)y〉 = Ef (ux)(y),

and so Ef commutes with right translation operators. �

Let L(B(S)) be the space of all bounded linear operators on B(S) and
L0(B(S)) be the closed subspace of L(B(S)) consisting of those operators which
commute with all right translation operators τx on B(S).

Theorem 3.3. Let S be a unital foundation topological ∗-semigroup with iden-
tity e, then B(S)∗ is isometrically isomorphic to L0(B(S)) and B(S)̂ is homeo-
morphic to the space End(L0(B(S))) consisting of non-zero endomorphisms of
L0(B(S)). In particular B(S)̂ is a compact unital semitopological semigroup.
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Proof. By above lemma, the map f 7→ Ef is an isometric isomorphism from
B(S)∗ into L0(B(S)). Given E ∈ L0(B(S)) define f ∈ B(S)∗ by 〈f, u〉 =
E(u)(e), for u ∈ B(S). Then

Ef (u)(x) = 〈f, ux〉 = E(ux)(e) = E(u)x(e) = E(u)(x),

for x ∈ S and u ∈ B(S). Therefore Ef = E. Now it is easy to check that f is
multiplicative if and only if Ef is an endomorphism. Next B(S)∗ is isomorphic
with the w∗-closed linear span of {ωΩ(x) : x ∈ S} in MΩ [1, 2.1]. Now for each
net {fα} ⊆ B(S)∗, Efα

→ Ef in WOT if and only if Efα
(u) → Ef (u) weakly,

for each u ∈ B(S), that is 〈m,Efα(u)〉 → 〈m,Ef (u)〉, for m ∈ B(S)∗, which
in turn is equivalent to 〈f◦α, ψ.m〉 = 〈m, f◦α.ψ〉 → 〈f◦, ψ.m〉 = 〈m, f◦.ψ〉, for
m ∈ B(S)∗ and ψ ∈ (MΩ)∗. But B(S) is unital and so (MΩ)∗.B(S) = (MΩ)∗,
hence the latter is equivalent to 〈f◦α, ψ〉 → 〈f, ψ〉, for ψ ∈ (MΩ)∗, that is fα → f
in w∗-topology. �

4. Examples

In this section we calculate the algebras A(S) and B(S) in various examples.
One class of examples are semigroups of type U [4].

The following example shows that the existence of an identity is needed in
Proposition 2.3.

Example 4.1. Let S = N ∪ {0} with discrete topology and multiplication
n.m = δnmn, for n,m ∈ S. Then each singleton {n} is the trivial group and S
is of type Ū . In this case R(S) = `1(N)∪C [5, 3.1.6], whereas B(S) = span{f ∈
cb(S) : f(n) ≥ f(0) ≥ 0}.

Example 4.2. Let S be the unit ball of L∞(Ω, µ) with pointwise multiplication
and w∗-topology. We assume that µ is a finite measure on Ω. Put

U = {f ∈ S : |f | = 1 or 0}.

In this case f
′
= f̄ if f 6= 0 and 0

′
= 0. We claim that the map f 7→ f

′
= f̄ is

continuous on U . Let fα → f in w∗-topology, i.e.∫
Ω

gfαdµ→
∫

Ω

gfdµ (g ∈ L1(Ω, µ)).

Then we have ∫
Ω

g(f̄α − f̄)dµ =
( ∫

Ω

ḡ(f̄α − f̄)dµ
)̄
→ 0,

for each g ∈ L1(Ω, µ). This shows that S is of type Ū . In particular B(S) =
R(S).

Example 4.3. Let S = G ∪ {∞} be a one-point compactification of a locally
compact group G. If {gα} is a net in G and gα → ∞ in S, then g−1

α → ∞
in S. If gα → g in G then g−1

α → g−1 in G. Hence S is of type Ū . Also S

is unital with identity ∞. If G is abelian, then B(S) = R(S) = M0(Ĝ)̂ ⊕ C,
where M0(Ĝ) = {µ ∈M(Ĝ) : µ̂ ∈ C0(G)} [5, 5.1.3].
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Example 4.4. Let S = ([0, 1],max) with involution x∗ = x. Then S is a
compact abelian unital semigroup and Ŝ is an idempotent semigroup. Indeed

Ŝ = {χ[0,x] : x ∈ S}.

In particular Ŝ separates the points of S (and so does Σ(S).) Also

L1(S) = {f : S → C : f measurable and
∫ 1

0

|f(x)|dx <∞}

is a Banach algebra with convolution

f ∗ g(x) = f(x)
∫ x

0

g(t)dt+ g(x)
∫ x

0

f(t)dt.

L1(S) has a bounded approximate identity. Let f : S → C be positive definite,
then

n∑
i,j=1

cic̄jf(xix
∗
j ) ≥ 0,

for each n ≥ 1, c1, . . . , cn ∈ C, and x1, . . . , xn ∈ S. Once put n = 1, c1 = 1, and
x1 = x, and then put n = 2, c1 = c2 =

√
−1, and x1 = x, x2 = y to get

f(x) ≥ 0, f(x)− 2f(xy) + f(y) ≥ 0,

for each x, y ∈ S. This shows that f is non-negative and non-increasing.
Conversely all such functions are positive definite, and so A(S) = B(S) =
BV [0, 1]. In particular A(S) is regular and natural [4, 4.4.35]. Also B(S) is
not a dual space [5]. Note that in this case S is not foundation [7] (compare
with [1].) The convolution product of two elements in L2(S) is defined as above.
In particular for g(x) = 1 and

f(x) =

{
xsin( 1

x ) x 6= 0
0 x = 0,

,

we have f, g ∈ L2(S), but

f ∗ g(x) = x2sin(
1
x

) +
∫ x

0

tsin(
1
t
)dt,

for x 6= 0 and f ∗ g(0) = 0. It is easy to see that f ∗ g /∈ BV [0, 1]. In particular
A(S) 6= L2(S) ∗ L2(S).

Example 4.5. Let S = (R+,+) with involution x∗ = x. Then S is a locally
compact commutative unital ∗-semigroup. If f : S → C is continuous and
positive definite, then in the corresponding inequality, once put n = 1, c1 = 1,
and x1 = x

2 , and then put n = 2, c1 = 1, c2 = −1, and x1 = x
2 , x2 = y

2 to get

f(x) ≥ 0, f(x)− 2f(
x

2
+
y

2
) + f(y) ≥ 0,
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for each x, y ∈ S. This shows that f is non negative and convex. Conversely
we know that R̂+ ' R+ [4] and we have the Laplace transform

µ̂(x) =
∫ ∞

0

e−xtdµ(t),

for µ ∈M(R+), and these are exactly the elements of B(R+) [2].

Example 4.6. Let S = (N ∪ {0},+) with involution x∗ = x. Then S is a
discrete abelian unital semigroup. If f : S → C is positive definite, then in the
corresponding inequality, once put n = 1, c1 = 1, and x1 = n, and then put
n = 2, c1 = c2 = 1 and x1 = 0, x2 = n, or c1 = 1, c2 = −1 and x1 = m,x2 = n
to get

f(2n) ≥ 0, f(0)− 2f(n) + f(2n) ≥ 0, f(2m)− 2f(m+ n) + f(2n) ≥ 0,

for each m,n ∈ S. It follows from the first and second inequality that f is real
valued. In this case Ŝ ' [−1, 1] with multiplication. Hence B(S) 'M [−1, 1].
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